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ABSTRACT

Most 3D face processing systems require feature detection
and localisation, for example to crop, register, analyse or
recognise faces. The three features often used in the liter-
ature are the tip of the nose, and the two inner corner of
the eyes. Failure to localise these landmarks can cause the
system to fail and they become very difficult to detect un-
der large pose variation or when occlusion is present. In this
paper, we present a proof-of-concept for a face labelling sys-
tem, capable of overcoming this problem, as a larger number
of landmarks are employed. A set of points containing hand-
placed landmarks is used as input data. The aim here is to
retrieve the landmark’s labels when some part of the face is
missing. By using graph matching techniques to reduce the
number of candidates, and translation and unit-quaternion
clustering to determine a final correspondence, we evaluate
the accuracy at which landmarks can be retrieved under
changes in expression, orientation and in the presence of oc-
clusions.

Categories and Subject Descriptors

I.4.8 [Image Processing And Computer Vision]: Scene
Analysis

General Terms

Algorithms,Experimentation
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1. INTRODUCTION
In anthropology, labelled points (landmarks) are used to

compare the shape and size of individuals. Here a labelled
point on one individual “corresponds” to the point of the
same label on an other individual. In face processing, such
landmarks are used to perform both preprocessing (cropping
[16], registering, [17]), processing (morphing, mapping), and
feature-based face recognition [10]. For a long time land-
mark labelling has been of secondary interest because it was
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relatively easy to have a high quality detection/localisation
on the available databases containing only frontal non-occ-
luded views. However, as the databases grow bigger and
start to include pose variations and occlusions, the problem
reappears. The features that are easiest to detect are the
tip of the nose and the inner corner of the eyes because of
their extremal curvature. However the inner corner of the
eyes can easily be occluded by the nose bridge when deal-
ing with orientation, or more generally by spectacles. The
tip of the nose will be very rarely occluded, but the curva-
ture attached to it can be seriously altered as part of the
neighbourhood of the nose is missing (self-occluded) when
processing a non-frontal view. This is a direct consequence
of using single-viewpoint 3D sensors, which generate 2.5D
data.

No matter how good a landmark descriptor is, there will
always be cases where its value cannot be computed, because
of missing data (occlusion) or noise in its local neighbour-
hood. Therefore, in the 3D face data of non-cooperating
subjects, a landmarking approach should try to detect as
many points as possible. Doing this with landmark-specific
recipes leads to complex systems and training procedures,
and in this practical sense, generic methods are more prefer-
able. Here we present an approach, which aims to provide
general labelling over a wide a region of the face, which is
robust to pose variations and occlusions.

After a brief discussion of the state of the art in 3D face
landmark detection, our landmark labelling system will be
presented in section 3. The experiments to test the system
and the results are described in section 4, and a final section
is used for conclusions.

2. RELATED WORK
Automatic feature detection on 3D faces started almost

20 years ago but really became an important topic after
2000, when the 3D capture devices start to be more common,
and when publicly available 3D face databases appeared.
The great majority of feature detection papers deal with
landmarks, and a very few with labelled lines or regions.

The problem of feature detection is closely linked to the
registration problem. Very often selected points are used to
constrain registrations and, conversely, registration is used
to map a model on a surface to detect landmarks. In this
paper, surface registration methods (the most common of
which is Iterative Closest Point(ICP) [1]) are not consid-
ered because of their need for relatively clean data and good
initial pre-alignment.

Most of the other methods of detection are landmark-
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Figure 1: Problem to solve: Given a model and a set of points containing some hand-placed target landmarks,
can the labels of the hand-placed landmarks be retrieved? Does it work when large parts of the face are
missing? Here the automatic points are detected by taking the points that locally maximise the seeding score
for any of the landmarks in the model.

specific. Database-dependent hypotheses are sometimes made,
for example that the tip of the nose coordinate has a high
value along axis z [2][6], or an extremal value along x when
large yaw rotation is present [4].

Most of the methods use, at some point, the notion of local
curvature of the surface. The two most often used measures
are the HK curvature and the Shape Index [13].

A few methods use shape descriptors (for example Spin
Images[12] or Ballon Images[17]) consisting of pose invariant
shape histograms that characterize the local region around
a landmark. However, the fact that the descriptors may
employ extended local regions makes them sensitive to the
significant self-occlusions that can occur at extreme head
poses in 2.5D face data[17].

Some authors have noticed that the sagittal slice of the
face remains identical over orientation changes and there-
fore can be used to detect the nose. In [8], contours of
the mesh are extracted at varying angles until it matches
a nose profile signature previously learnt. They reached
98.52% accuracy for the nose tip with variations of angle
up to 90 ◦. Approaches not dealing with orientation have
also used transverse slices to detect the nose and its corners
[21][16].

In addition to [8], two other papers deal with orientation
changes above or close to 45 ◦. In [15], candidates for the
tip of the nose and the corners of eyes are detected using
mainly curvature descriptors. As the three points selected
can be on the same side of the face, it allows the detection of
landmarks with orientation changes. The same authors use
the directional maximum along varying direction to detect
tip of the nose candidates [14]. Profiles passing through
those candidates are then extracted and compared to select
the tip of the nose.

The main drawbacks of many current methods are their
dependence on specific landmarks being reliably extracted.
Most of them will fail if the tip of the nose is not present or
not well defined in the face scan data. A summary of recent
literature is given in table 1.

3. 3D FACE POINT LABELLING
Figure 1 illustrates the problem to be solved. A set of 14

landmarks on the 3D facial surface forms the basis of our
graph model. Our ultimate aim is to be able to detect these
landmarks automatically. The problem is complicated by
the fact that not all of the landmarks will be visible, due to
pose variations caused by self occlusion and other occlusion.

As a first step towards this, we want to demonstrate that
if the unlabelled points that we want to detect are present
within a large number of automatically detected points of
interest, it is possible to relabel the landmarks correctly, as
illustrated in figure 1. Note that the 14 hand-placed land-
marks are not necessarily the ones that will be used in our
final system, rather they are used as a convenient way of
evaluating our labelling system.

Our labelling system is composed of a graph matching
stage and a post-processing stage, which uses a scale-adapted
rigid registration. The graph matching system consists of
two graphs: firstly a fully connected (complete) model graph
created from the 14 landmarks in all of the hand-labelled
training data set, and secondly a fully connected query graph,
generated from the (unlabelled) input points (box c in fig-
ure 1). Both of these graphs are attributed, with vertices
having N descriptors (eg. curvature) and edges having M
descriptors (eg. Euclidean distance).

In more detail, the attributes for each node in a graph are
computed using a local spherical neighbourhood of radius
15 mm within the face scan (training or testing set). Most
of the attributes are derived from the maximal curvature
(k1) and minimal curvature (k2) over this neighbourhood
and the full list of 5 nodal attributes is:

• Mean Curvature (H): k1+k2

2

• Gaussian Curvature (K): k1k2

• Shape Index (SI): 1
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arctan k1+k2

k1−k2

• Rough Volume (Vol): Sum of the tetrahedron volumes
from the centroid of the perimeter to all the triangles
inside of the neighbourhood.

• Log Curvedness (LC): 2

π
log

q
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The attributes for the edges of the graphs are:

• Euclidean Distance (dist)

• Coarse Geodesic Distance (distG): shortest path on the
mesh

• Ratio between the two attributes above (ratioEucli-
Geod)

• Difference between vertex properties at either end of
the edge (∆H, ∆LC, ∆Vol, ∆SI)

The labelling system is composed of an off-line part where
the graph model is trained (described later) and an on-line
testing part. The online testing is divided into three main
processes, as follows:



Table 1: Main recent 3D face landmarking papers and their test case.
Authors Landmarks Nose Eye corners Database Size Crop Angles Occl. Time Year
Chang,[2] 4 99.4% FRGC v2 4,485 yes – – – 2006
Lu,[14] 7 98% – MSU 300 yes 0 ∼ 45 ◦ – – 2006

Mian,[16] 1 98.3% – FRGC v2 4,950 no – – – 2006
D’Hose,[6] 7 99.89% 99.47% FRGC v1 277 yes – – 16 s 2007

Segundo,[21] 6 99.95% 99.83% FRGC v2 4,007 yes – – 0.4 s 2007
Faltemier,[8] 1 98.52% – NDOff2007 7,300 yes 0 ∼ 90 ◦ – < 1 s 2008

Dibeklioglu,[7] 7 95.61% 96.28% FRGCv1 943 no – – – 2008
99.87% 100% Bosphorus 1,576 yes – – –

Romero,[19] 3 99.77% 96.82% FRGC v2 4,013 no – – – 2009
Szeptycki,[22] 9 100% 100% FRGC v2 1,600 no – – – 2009
Colombo,[5] 3 100% UND 951 no – – – 2009

3 89.8% UND 951 no – yes –
3 90.4% IVL 104 no – yes –

Pears,[17] 1 99.6% – UoY 3D 1,121 no – – – 2010

1. Compute an attributed graph (the query graph) from
the unlabelled input points on the facial scan, as de-
scribed above.

2. Run a graph matching process using the generic model
graph of the face. Here we determine initial candidates
for each vertex and edge of the query graph. We then
iterate “relaxation by elimination” [23] to reduce the
number of candidates.

3. Select the best labels using a scale-adapted rigid reg-
istration. The method employed here is: (i) Select
current best labels using thresholding on scores. (ii)
Compute registration transformations using combina-
tions of 3 points. (iii) Cluster rotational and transla-
tional components to determine a good scale-adapted
rigid registration. (iv) Use this registration to deter-
mine the best label assignment.

The graph matcher we have developed is in fact a hyper-
graph matcher which implies that the processes applied to
nodes can also be applied to the edges. The term “element”
is used hereafter to generally refer to both vertices and edges.

3.1 Offline Training Process
A set of facial scans that are disjoint from the testing

set are selected for training. Using this data, the statisti-
cal distribution of each attribute value associated with each
element (node or edge) in the model graph is collected and
modelled using a Gaussian.

To determine a matching score between an element’s at-
tribute value in the query graph and an element’s attribute
distribution in the model graph, a normalised probability
density function is used, as follows:

Score(P Query
, P

Model) = exp
−(P Query

value − P Model
µ )2

2 ∗ P Model
σ

2
(1)

where P
Query
value is the value of the query attribute and P Model

µ

and P Model
σ are the mean and deviation of the trained model

attribute distribution.
Note that this equation relates to one attribute, yet an el-

ement is described by a N-dimensional vector of attributes.
Thus we need a method of composing a match score over
this multidimensional space. In order to do this, we find the
best linear combination of attributes (for every node/edge
in the model graph) that discriminates between elements of
the same label and those of a different label. To do this, we
apply Linear Discriminant Analysis (LDA) to the training
data, an example is given in figure 2. Shown at the bottom
of this figure is a blue vertical line that represents the seed-

ing threshold. It is set such that at least 95% of matching
landmarks in the training set are above it. When testing,
this threshold is used to seed candidate labels for each query
point.

The last parameters that need to be determined for the
graph matcher are the thresholds used for the elimination
decisions. For that, a simple heuristic is used: the thresholds
are set to the maximal value that allows all training data to
succeed.

The final part of offline modelling in our system gener-
ates a rigid face model used in our online post-processing
stage. To retrieve relative coordinate positions from the set
of statistics on pairwise Euclidean distances, a spring par-
ticle simulator is used. The landmarks are considered as
particles having a random initial position. All of them are
linked by springs with their equilibrium length equal to the
mean distance between the two points they represent. The
simulator runs until it stabilises in a coherent configuration
which is used as the rigid face model.

3.2 Graph Matching
To recap, the graph matcher takes as input a query graph

and a model graph and returns, for each node of the query, a
list of probable candidate labels in the model with associated
scores.

3.2.1 Seeding

First, scores for each possible association are computed by
projecting the vector of normalised attribute scores into the
LDA space. Only the model elements for which the score
reaches a given threshold (blue line in figure 2) are added to
the list of candidates.

3.2.2 Elimination rules

The graph matching heuristic used in this paper consists
of a loop of elimination processes until the system stabilises.
At each iteration (see figure 3), the less probable candidates
are eliminated for each element. A candidate is thought
to be improbable if its direct neighbourhood gives it very
little support. Two kinds of support are considered, the
number of matching neighbours and the score attached to
those matching. In most graph matchers [3] the neighbours
of a vertex will be other vertices. Here we use a hypergraph
matcher which implies that the neighbours of a vertex are
the edges connected to it and vice versa. The edge’s scores
help erase node candidates, and the node’s scores help erase
edge candidates.

The process is first run using static matching scores. Once
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Figure 2: Example (for the nasion) of element cor-
respondences (query-model) plotted in the LDA-
reduced space of their score per attribute. The
density function below show the separation of the
two classes along the main component of the trans-
formed space. The blue vertical line represents the
selected seeding threshold.

Table 2: Variables definition
A Element type ∈ {V ertex, Edge}
Ā ∈ {V ertex, Edge} \ A.

QA
i ith query element of type A

MA
i ith model element of type A

Cand(QA
i ) list of model candidates MA

j for QA
i

Neigh(XA
i ) list of element XĀ

k connected to XA
i

Score(QA
i , MA

j ) Matching score between two elements
dynamicScore Allow score to be updated

TreshSup(MA
j ) Learned Support Threshold

TreshSco(MA
j ) Learned Score Threshold

the system stabilises and stops eliminating candidates, the
scores are normalised so that their sum over the candidates
of one element is equal to one. The support thresholds are
replaced by the ones adapted to the dynamic elimination and
then the flag dynamicScore is set to true. Once this set of
iteration stabilises, the graph matching ends and returns the
list of candidates for each element.

3.3 Final registration
The output of the graph matcher contains far less possi-

ble correspondences than the initial problem (see figure 5)
but our objective is a one-to-one correspondence. To make
the final decision, the rigid model of the hand-placed model
landmarks is used.

Given a set of query landmarks and a set of model land-
marks, the registration is defined as the 3D transformation
that minimises the mean square distance between the points
of corresponding label. A closed-formed solution to this
problem is given in [11]. Hereafter, the registration that uses
all of the landmarks of the model is referred to as “global”
and the registration using a subset of three landmarks is
called “triangle registration”. The transformations are de-
composed in three parts: scale, translation, and rotation.

Algorithm 1: Elimination

For each QA
i in Query graph:

totalScore = 0.0

For each MA
j ∈ Cand(QA

i ):
support = 0; score = 0.0

For each MĀ
k ∈ Neigh(MA

j ):
sup = 0; sco = 0.0

For each QĀ
l ∈ Neigh(QA

i ):

If MĀ
k ∈ Cand(QĀ

l ):
sup = sup + 1

sco = max(sco, Score(QĀ
l , MĀ

k ))
If sup > 0:

support = support + 1
score = score + sco

score = score/support

If support < TreshSup(MA
j )

or score < TreshSco(MA
j ):

Cand(QA
i ) = Cand(QA

i ) \ MA
j # Erase candidate

Else:
If dynamicScore: # Update score

Score(QA
i , MA

j ) = Score(QA
i , MA

j ) ∗ score

totalScore = totalScore + Score(QA
i , MA

j )
If dynamicScore: # Normalise

For each MA
j ∈ Cand(QA

i ):

Score(QA
i , MA

j ) = Score(QA
i , MA

j )/totalScore

Figure 3: Elimination procedure called at each iter-
ation of the graph matcher.

For the rotation part, a unit-quaternion representation is
used.

Our hypotheses at this stage are the following:

1. A significant proportion of the best query candidates
for each model landmark returned by the graph matcher
are good matches.

2. The transformation that registers the whole model to
the whole face is very similar to the transformation
that registers a sub-part of the model (a triangle) with
the corresponding sub-part on the query face.

3. Bad correspondences are unlikely to produce a coher-
ent transformation: different sub-parts will be regis-
tered in different ways.

The smallest number of points to get a registration is
three. However, when the triangle is very flat (close to a
straight line), the transformation is less reliable. Triangles
with an angle less than 15 degrees are discarded, which rep-
resents about 22% of the combinations.

For the clustering used to get the final transformation,
a very simple approach is adopted. First the distances be-
tween all pairs of elements are determined. A binary dis-
tance tree is created by selecting the smallest distance be-
tween the already computed sub-tree and the rest of the
points. At each step the distances involving the newly cre-
ated sub-tree are updated using its new centroid. The dis-
tance tree is then cut using a distance threshold and/or a
critical number of elements per sub-tree.

The final registration is used to assign the definitive la-
bels by selecting the closest query point to each labelled
landmark in the registered model.

3.3.1 Unit-Quaternion Clustering

While clustering Euclidean vectors (translations) is not
problematic, clustering quaternions that lie on a 4-dimensional
sphere requires some precautions. As two quaternions q̇ and
−q̇ represent the same rotation, it is important to check that
the dot product between two compared quaternions is posi-



Figure 4: Example of results using the Bosphorus database and one using the FRGC database (right) where
the nose is missing. Green dots represent good matches, red dots, false positive.

tive, otherwise we multiply one of them by −1. The metric
used for the clustering is the following:

d(q̇1, q̇2) = θ = 2arccos (q̇1.q̇2) (2)

Finally, we determine the centroid of a subset of quater-
nions on the 4-sphere. In [9], Gramkow used the Taylor
series of cos θ

2
to approximate the distance for small angles.

Under those assumptions, he proved that the centroid is
equal to the normalised Euclidean barycentre of the unit-
quaternions coordinates. This allows us to compute the
unit-quaternion clustering in a simple way.

4. EVALUATION
To test the labelling, a set of hand-placed landmarks are

unlabelled and mixed with other automatically detected points
that are likely to be landmarks according to their LDA pro-
jected scores. The percentage of points found to be the same
as the hand-labelled points is used to evaluate the system.

4.1 Database
Tests are performed on two databases. The first one is the

full FRGC v2[18] where 200 faces of different individual are
selected as our training set and all the rest as a test set (4750
faces). In this proof-of-concept, the faces have been cropped
using a 100 mm sphere around the nose prior to the experi-
ment. (We appreciate that this is a slightly easier problem
than using the full scan of head and shoulders, and we will
address these larger scans in future work.) The landmarks
used are a mixture of contributions from [22] and [19].

The second database is the Bosphorus database [20]. It
contains 4666 captures of 105 people. Unlike the FRGC, it
contains variations in pose and occlusions (hand, hair and
spectacles partially covering the face). Our experiments are
performed on different subsets, as follows:

N Neutral Expression
E Happy/Sad/Surprise/Anger/Disgust

AU Action Unit Expressions [20]
O Occlusions (hand, hair and glasses)

YR45 Yaw Rotation 45 ◦ Right
YL45 Yaw Rotation 45 ◦ Left
PR Pitch Rotation up and down
CR Cross Rotation Pitch+Yaw

In both databases, some landmarks have been detected
(eg. subnasale) or refined automatically (eg. alares, nasion)
and checked manually.

The automatically detected points on the query scan are
extracted by selecting over a small neighbourhood (radius
15 mm) candidate points that maximise the seeding score
for any of the landmark in the model. When a candidate
is on the border of the neighbourhood, it is not selected.
When combining automatically detected points and hand-
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Figure 5: Number of node correspondences at dif-
ferent stages of the system computed on the FRGC
test set. At the beginning, after the seeding, after
the graph matching, and at the end.

placed points, the automatic ones that are less than 10 mm
away from a hand-placed point are erased.

4.2 Results
In controlled conditions on cropped inexpressive frontal

faces, our generic system labels the landmarks with an ac-
curacy of 93.8% with higher score for the tip of the nose
(97.0%) and subnasale (96.5%), see table 3. The points that
are more difficult to label are the outer corner of the eyes
and chin (pogonion). This is not surprising as those points
don’t have a very discriminating shape and can be easily
misdetected if the final registration is not perfect.

On a more challenging database like the Bosphorus, we
notice that our system does not give as good results as land-
mark specific techniques (see Figure 4). However, it per-
forms quite consistently when occlusion and change in pose
are considered, when most existing techniques will fail with
such input. It should be emphasised that the hand-placed
landmarks are not necessarily correlated with geometric ex-
trema in this experiment, if the set of target landmark is de-
termine using such saliency, better results may be achieved.

Another interesting discovery is that the subnasale point,
which is almost never used in automatic landmarking, is one
of the most easily detected point in our experiments.

The time performance of the system when the graph has
an average of 50 nodes is 0.67 s for the graph creation, 0.45 s
for the graph matching and 0.04 s for the post-processing.
The fact that complete graphs are used is costly when the
number of nodes increases. Look at different graph topolo-
gies (tessellation, etc) can help solve this problem.



Table 3: Results per landmark (0-13) on the FRGC v2 database. The test set is split in two subparts:
Neutral(-N) and Expression(-E), shown in the first two rows. The third row shows these results combined.

Train Test 0 1 2 3 4 5 6 7 8 9 10 11 12 13

train(200) test-N(3108) 90.1 94.9 95.2 94.2 86.7 97.0 96.1 95.8 96.5 94.7 93.2 95.8 93.8 90.4

train(200) test-E(1642) 77.7 84.8 84.7 84.6 74.2 87.8 86.1 85.6 84.6 73.0 71.4 81.1 73.5 68.7
train(200) test(4750) 85.8 91.4 91.5 90.9 82.4 93.8 92.6 92.3 92.4 87.2 85.7 90.8 86.8 83.0

Table 4: Results per landmark (0-13) on subsets of the Bosphorus database.
Train Test 0 1 2 3 4 5 6 7 8 9 10 11 12 13

N-train(99) N-test(200) 92.5 97.0 98.0 98.0 92.5 98.5 97.5 97.5 99.0 94.5 96.0 96.0 94.5 88.5

N-train(99) E(453) 77.0 87.1 86.5 87.6 75.0 90.2 88.9 88.3 87.1 68.4 65.5 81.6 71.0 55.4
N-train(99) AU(2150) 84.8 92.2 91.7 92.5 86.5 92.7 92.0 92.2 91.2 75.7 72.2 82.5 74.1 65.5
N-train(99) O(381) 68.9 78.8 74.5 78.9 69.9 83.4 82.6 82.7 84.8 82.4 81.5 84.8 81.0 73.0
N-train(99) PR(419) 84.0 90.1 89.7 89.4 84.7 90.6 90.6 90.9 91.3 88.7 88.7 89.2 88.5 80.1

YR45-train(20) YR45-test(85) – – 83.5 84.7 85.8 88.2 – 91.7 88.2 – 83.5 83.5 80.0 72.2
YL45-train(20) YL45-test(85) 81.1 83.5 69.4 – – 86.9 88.2 – 88.0 84.7 – 72.9 76.4 63.4
YR45-train(20) CR(211) – – 70.1 72.3 70.1 77.6 – 79.5 77.7 – 72.0 75.3 71.5 65.2

Mean (3688-3984) 82.4 90.0 87.7 89.2 82.7 90.5 90.6 90.2 89.6 78.1 75.5 83.4 76.9 67.8

5. CONCLUSION AND FUTURE WORK
Our technique shows relatively good results on difficult

test cases with changes in pose and occlusion. The main ad-
vantages of this technique is that it is landmark-independent
and can learn several different models without human inter-
vention and/or addition of specific rules.

The next step in our research will be to evaluate repeata-
bility of automatic candidate detectors, and couple both
point detection and labelling systems to produce an auto-
matic landmarker. To our knowledge, this kind of global
approach to face landmarking has never been evaluated be-
fore. While giving lower results than landmark-specific tech-
niques for the tip of the nose and the eye corners, it is
very promising for unconstrained 3D face landmarking when
these points are difficult to localise. Finally our method may
also be used to landmark other kind of objects such as bones,
man-made objects and so on.
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